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Abstract. The inclusion of nonadiabatic corrections to the electron-phonon interaction leads to a strong
momentum dependence in the generalized Eliashberg equations beyond Migdal’s limit. For a s-wave sym-
metry of the order parameter, this induced momentum dependence leads to an enhancement of Tc when
small momentum transfer is dominant. Here we study how the d-wave symmetry affects the above behav-
ior. We find that the nonadiabatic corrections depend only weakly on the symmetry of the order parameter
provided that only small momentum scatterings are allowed for the electron-phonon interaction. In this
situation, We show that also for a d-wave symmetry of the order parameter, the nonadiabatic corrections
enhance Tc. We also discuss the possible interplay and crossover between s- and d-wave depending on the
material’s parameters.

PACS. 63.20.Kr Phonon-electron and phonon-phonon interactions – 71.38.+i Polarons
and electron-phonon interactions – 74.20.Mn Nonconventional mechanisms

1 Introduction

In ordinary low-temperature superconductors, the small-
ness of the relevant phonon frequency ω0 compared to the
Fermi energy EF permits to formulate a theory of super-
conductivity based on a closed set of formulas known as
Migdal-Eliashberg (ME) equations [1,2] allowing quanti-
tative agreements with experiments [3]. The closed form
of the ME equations stems from Migdal’s theorem which
states that as long as ω0/EF � 1 the electron-phonon
(e-ph) vertex corrections to the electron self-energy are at
least of order λω0/EF, where λ is the e-ph coupling, and
can therefore be neglected [1].

A different situation is encountered in high-Tc super-
conductors such as cuprates and fullerides. These materi-
als have in fact Fermi energies much smaller than those
of conventional metals [4,5] so that the energy scale ω0

associated to the mediator of the superconducting pairing
can be comparable to EF. Hence, the quantity ω0/EF is
no longer negligible and in principle vertex corrections be-
come relevant preventing the ordinary ME scheme to be
a correct description of the superconducting state.

The possible breakdown of Migdal’s theorem in high-
Tc superconductors inevitably calls for a generalization
beyond the ME scheme to include the no longer negligible
vertex corrections. A possible way to accomplish this goal
is to rely on a perturbative scheme by truncating the infi-
nite set of vertex corrections at a given order. In previous
works, we have proposed a perturbative scheme in which
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the role of small parameter is played roughly by λω0/EF

leading to a generalized ME theory which includes the
first nonadiabatic vertex corrections [6,7]. For a single-
electron Holstein model, such a first order perturbative
approach leads to good agreements with exact results as
long as the system is away from polaron formation, that
is for λ < λc ' 1 [8]. The region of validity of the per-
turbative approach, which we could name nonadiabatic
region, is characterized by quasi-free electrons (λ < 1)
coupled in a nonadiabatic way (ω0/EF not negligible) to
the lattice. According to this definition, our nonadiabatic
region is different from the classic polaronic picture. Of
course, larger values of λ would render higher order ver-
tex corrections important leading to the breakdown of our
truncation scheme.

The key point of the nonadiabatic theory, is that the
e-ph effective interaction is described in terms of ver-
tex corrections which depend on the momentum trans-
fer |q| = q and the Matsubara exchanged frequency ω in
a non-trivial way. For example, the e-ph vertex correc-
tion appearing in the normal state self-energy becomes
positive (negative) when vFq < ω (vFq > ω), where vF

is the Fermi velocity [7]. The generalization to the super-
conducting transition reveals that this situation is also en-
countered for the class of diagrams beyond Migdal’s limit
relevant for the Cooper channel. Concerning the critical
temperature Tc, as long as the momentum transfer is less
than ω0/vF, the nonadiabatic corrections lead to a strong
enhancement of Tc also for moderate values of the e-ph
coupling λ [6,7,9]. Such a strong momentum-frequency
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dependence of the vertex corrections is confirmed by nu-
merical calculations within a tight-binding approach [10]
and general theoretical considerations on the physical in-
terpretation of such nonadiabatic corrections [11].

So far, nonadiabatic superconductivity has been stud-
ied by requiring the order parameter ∆ to be independent
of the momenta. This situation is certainly suitable for
the fullerene compounds which are s-wave superconduc-
tors. However, one striking characteristic of several high-
Tc superconductors is the strong momentum dependence
of the order parameter ∆(k). Among the several types of
measurements aimed to resolve the pairing symmetry, the
Josephson tunneling [12] and angle resolved photoemission
experiments [13] are the most convincing ones showing
that the order parameter of several cuprates, maybe with
the exception of the electron-doped NCCO, has a predom-
inant d -wave symmetry: ∆(k) ' ∆[cos(kx)− cos(ky)].

The origin of the d -wave symmetry in high-Tc cuprates
is still debated. On one hand, the observed d -wave symme-
try is regarded as an evidence against any purely electron-
phonon pairing interaction so that the mechanism re-
sponsible for superconductivity should be sought among
pairing mediators of electronic origin (like antiferromag-
netic fluctuations) with eventually a minor electron-
phonon component. On the other hand, several theoretical
studies have shown that the e-ph interaction could pro-
duce, under some quite general circumstances, a d -wave
symmetry of the condensate [14,15]. This could happen
when for example charge carriers experience an on-site
repulsive interaction together with a phonon induced at-
traction for large inter-electrons distances. The on-site re-
pulsion inhibits the isotropic s-wave superconducting re-
sponse leading the system to prefer order parameters of
higher angular momenta. A quite general analysis of the
interplay between on-site repulsion and neighbour and
next-neighbour attraction has shown s-wave to d -wave
crossover depending on the microscopic parameters of a
model BCS Hamiltonian [16].

The purpose of the present paper is to study how
the d -wave superconducting response resulting from a
strongly momentum dependent total interaction, is af-
fected by the inclusion of nonadiabatic vertex corrections.
In particular, we intend to clarify whether the complex
momentum-frequency structure of the nonadiabatic con-
tributions could sustain an underlying d -wave symmetry
of the order parameter.

In the next section we introduce the model and the cor-
responding ME equations for s- and d wave symmetries of
the gap. In Section 3 we generalize the ME equations to
include the nonadiabatic terms for each symmetry chan-
nel and calculate the corresponding critical temperatures.
We find that the theory of nonadiabatic superconductiv-
ity can lead to d -wave even for phonons in a broad pa-
rameter range which depends on the degree of electronic
correlation.

attractive part

V
pa

ir

q

qc
repulsive part

Fig. 1. Sketch of the total (el-ph + Coulomb) interaction in
momentum space.

2 The model

In this section we introduce a simple model interaction
suitable for our investigation beyond Migdal’s limit and
capable of providing for s- or d -wave symmetries of the or-
der parameter. Let us consider the anomalous self-energy
at the critical temperature

ΣS(k) =
∑
k′

Vpair(k − k′)G(k′)G(−k′)ΣS(k′), (1)

where G(k′) is the fermion dressed propagator:

G(k′) =
1

iωm − εk′ −ΣN(k′)
(2)

and ΣN is the normal self-energy. We use the compact no-
tation k ≡ (k, ωn), k′ ≡ (k′, ωm) and

∑
k′ ≡ −Tc

∑
m

∑
k′

where ωn, ωm are fermionic Matsubara frequencies and
k, k′ are electronic momenta (from now on, all momenta
are two-dimensional vectors lying on the copper-oxygen
plane).

To define the model interaction Vpair(k − k′) we have
made use of a number of informations gathered from pre-
vious studies. First, in order to obtain order parameters
with higher angular momenta than s-wave, it is sufficient
to consider a pair interaction made of a repulsive part at
short distances and an attractive one at higher distances
(Fig. 1). In momentum space, this interaction corresponds
to an attractive coupling for small q and a repulsive one
for large q, where q = k− k′ is the momentum transfer.

Let us now try to interpret this strong momentum
modulation in terms of e-ph and electron-electron interac-
tions. In strongly correlated systems, the e-ph interaction
acquires an important momentum dependence in such a
way that for large values of the momentum transfer q
the e-ph interaction is suppressed, whereas for small val-
ues of q it is enhanced [17]. A physical picture to justify
this momentum modulation is the following [18]. In many-
electrons systems a single charge carrier is surrounded
by its own correlation hole of size ξ which can be much
larger than the lattice parameter a in the strongly corre-
lated regime. This implies that one electron interacts with
molecular vibrations of wavelength of order ξ or larger,
leading to an effective upper cut-off qc ' ξ−1 in the mo-
menta space. Thus we have a non zero electron-phonon
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interaction when |q| < qc. The cut-off momentum qc can
also be regarded as a measure of the correlation in the sys-
tem: aqc � 1 in strongly correlated systems while aqc ' 1
in the case of free electrons.

From the above considerations, the attractive part at
small q of our model pairing interaction finds a natural
interpretation in the e-ph coupling modified by the strong
electron correlations. We introduce therefore the following
simple form for the e-ph part of the pairing interaction:

V (k − k′) = |g(k− k′)|2D(ωn − ωm)

≡ g2

[
πkF

qc

]
θ(qc − |k− k′|)D(ωn − ωm),

(3)

where

D(ωn − ωm) =
−ω2

0

(ωn − ωm)2 + ω2
0

, (4)

is the phonon propagator for which we have adopted a sim-
ple Einstein spectrum with frequency ω0. In equation (3),
θ is the Heaviside step function and the prefactor (πkF/qc)
has been introduced in order to assure that the momentum
average of |g(k−k′)|2 becomes g2 for relatively small val-
ues of the cut-off qc regardless of the particular symmetry
of the order parameter. In this way the comparison be-
tween s- and d -wave solutions, especially in the nonadia-
batic case treated in the next section, is more transparent.

Having defined the nature of the attractive part of
the total pairing interaction Vpair(k − k′), we offer now
a possible interpretation for the remaining repulsive part
acting at large q. This repulsion is given by the resid-
ual e-e interaction and its momentum dependence can be
obtained, in analogy with the renormalization of the e-
ph interaction, by using the above picture of correlation
holes. In this picture, the residual e-e interaction should
ensure that charge fluctuations with wavelength less than
ξ are unfavourable. This can be modelled by requiring
that in momentum space the residual interaction is repul-
sive for |k−k′| > qc and, by using again the theta-function
for later convenience, we introduce therefore the following
residual repulsion:

U(k− k′) = U

[
πkF

qc

]
θ(|k− k′| − qc). (5)

In the above expression, U > 0 and the factor πkF/qc has
been introduced for the same reason as in equation (3).
Note that, in principle, qc depends on U , however here
we shall treat two quantities independently on each other
by keeping in mind that small values of qc correspond
roughly to large values of U . An additional simplification
of the following calculations is achieved by expressing the
off-diagonal self-energy (1) in terms of a suitable pseu-
dopotential U∗ rather then U . It is then opportune to
formally replace equation (5) by

U∗(k − k′) = U∗
[
πkF

qc

]
θ(|k− k′| − qc)

ω2
0

(ωn − ωm)2 + ω2
0

,

(6)

where U∗ represents the dynamically screened Coulomb
repulsion and the last factor is a cut-off over the
Matsubara frequencies which has been chosen to have the
same functional form of the phonon propagator for conve-
nience.

By summarizing the above results, in the off-diagonal
self-energy ΣS, equation (1), the total pairing interaction
Vpair(k − k′) is given by:

Vpair(k − k′) = V (k − k′) + U∗(k − k′), (7)

where V (k − k′) and U∗(k − k′) are given by equa-
tions (3, 6), respectively. Finally, the normal state self-
energy ΣN entering (2) is given by

ΣN(ωn) =
∑
k′

V (k − k′)G(k′), (8)

where the electron-electron interaction has been absorbed
in a shift of the chemical potential.

In what follows we assume the Fermi surface to be a
circle in the momenta space; thus the electronic energy
εk depends only on |k|. Moreover, we approximate equa-
tions (3) and (6) by keeping |k| = |k′| = kF so that, for
example, k = kF(cosφ, sinφ). In this way both ΣS and ΣN

depend on the momentum k only via the angle φ. At this
point it is convenient to transform the momentum inte-
grations appearing in ΣS and ΣN into energy integrations
as follows: ∑

k

→
∫

dφ
2π

∫
dεN(ε) (9)

where N(ε) is the density of states for the electrons. We
make the approximation of constant value for N(ε) = N0

and finite bandwidth E such that the energy is defined
in the interval −E/2 ≤ ε ≤ E/2. The chemical poten-
tial is µ = 0, so that we refer to the half-filled situations
(EF = E/2).

On performing the integration over the energy, the
anomalous self-energy ΣS reduces to:

ΣS(φ, ωn) = N0πTc

∑
ωm

∫
dφ′

2π
[
|g(cos θ)|2 − U∗(cos θ)

]
×D(ωn − ωm)

ΣS(φ′, ωm)
|ωm|Z(φ′, ωm)

2
π

arctan
[

E/2
|ωm|Z(φ′, ωm)

]
,

(10)

Z(φ, ωn) = 1 −N0
πTc

ωn

∑
ωm

∫
dφ′

2π
|g(cos θ)|2D(ωn − ωm)

× ωm
|ωm|

2
π

arctan
[

E/2
|ωm|Z(φ′, ωm)

]
, (11)

where ΣN(φ, ωn) = iωn[1−Z(φ, ωn)] and θ = φ− φ′. The
wave function renormalization Z(φ, ωn) actually does not
depend on φ and reduces to:

Z(ωn) = 1 −N0〈g2〉0
πTc

ωn

∑
ωm

D(ωn − ωm)
ωm
|ωm|

× 2
π

arctan
[

E/2
|ωm|Z(ωm)

]
, (12)
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where 〈g2〉0 =
∫ π
−π dθ|g(cos θ)|2/(2π). Let us expand the

off-diagonal self-energy (10) as follows:

ΣS(φ, ωn) =
+∞∑
l=−∞

Σ
(l)
S (ωn)Yl(φ) , (13)

where Yl(φ) = eilφ/
√

2π are eigenfunctions of the operator
L = −id/dφ. By requiring ΣS(φ, ωn) be real and invariant
under φ → φ ± π (singlet pairing) the above expansion
reduces to:

ΣS(φ, ωn) =
Σ

(0)
S (ωn)√

2π
+

√
2
π
Σ

(2)
S (ωn) cos(2φ) + · · · ,

(14)

where we have singled out the s-wave and d -wave compo-
nents since in the following we consider only these sym-
metries. By multiplying both sides of (10) by Y ∗l′ (φ) and
integrating over φ, it is straightforward to show that the
equations for different values of the index l are decoupled
and that Σ(l)

S (ωn) reduces to:

Σ
(l)
S (ωn) = − N0

[
〈g2〉l − 〈U∗〉l

]
πTc

∑
ωm

D(ωn − ωm)

× Σ
(l)
S (ωm)

|ωm|Z(ωm)
2
π

arctan
[

E/2
|ωm|Z(ωm)

]
, (15)

where

〈g2〉l =
1

2π

∫ π

−π
dθ |g(cos θ)|2e−ilθ (16)

〈U∗〉l =
1

2π

∫ π

−π
dθ U∗(cos θ)e−ilθ. (17)

Finally, by introducing the coupling constants λl =
N0〈g2〉l, µ∗l = N0〈U∗〉l, and by setting ∆l = Σ

(l)
S /Z, the

Eliashberg equations assume the following more familiar
form:

Z(ωn) = 1 −λ0
πTc

ωn

∑
ωm

D(ωn − ωm)
ωm
|ωm|

× 2
π

arctan
[

E/2
|ωm|Z(ωm)

]
, (18)

Z(ωn)∆l(ωn) = − (λl − µ∗l )πTc

∑
ωm

D(ωn − ωm)
∆l(ωm)
|ωm|

× 2
π

arctan
[

E/2
|ωm|Z(ωm)

]
. (19)

For l = 0 and l = 2, equations (18, 19) are Migdal-
Eliashberg equations for s-wave and d -wave symmetry
channels, respectively. The explicit expressions of the con-
stants λl and µ∗l follow from the models we adopted
for the electron-phonon and electron-electron interactions.
For l = 0 (s-wave) they reduce to:

λ0 = λ

[
πkF

qc

]
〈θ(qc − |k− k′|)〉l=0 = λ

arcsinQc

Qc
, (20)

µ∗0 = µ∗
[
πkF

qc

]
〈θ(|k− k′| − qc)〉l=0

= µ∗
(

π

2Qc
− arcsinQc

Qc

)
, (21)

while for l = 2 (d -wave):

λ2 = λ

[
πkF

qc

]
〈θ(qc − |k− k′|)〉l=2

= λ(1− 2Q2
c)
√

1−Q2
c , (22)

µ∗2 = µ∗
[
πkF

qc

]
〈θ(|k− k′| − qc)〉l=2

= −µ∗(1− 2Q2
c)
√

1−Q2
c , (23)

where λ = N0g
2, µ∗ = N0U

∗ and Qc = qc/2kF. Before
we generalize the above expressions to include the nona-
diabatic vertex corrections, it is useful to briefly examine
qualitatively how the the magnitude of the cut-off param-
eter Qc affects the gap symmetry. The total interaction
in the gap equation (19) is weighted by λl − µ∗l . For the
s-wave channel it reduces to:

λ0 − µ∗0 = (λ+ µ∗)
arcsinQc

Qc
− π

2Qc
µ∗, (24)

while for the d -wave case l = 2 it becomes:

λ2 − µ∗2 = (λ + µ∗)(1− 2Q2
c)
√

1−Q2
c . (25)

When Qc = 1 (that is qc = 2kF) the repulsive
interaction (6) vanishes and the e-ph coupling (3) becomes
structureless. In this limit we expect the s-wave solution
to dominate over the d -wave one. In fact, from (24, 25),
λ0 − µ∗0 = λ and λ2 − µ∗2 = 0. By lowering Qc, the to-
tal interaction acquires a momentum dependence, however
λ2−µ∗2 remains negative as long as 1/

√
2 < Qc < 1. In this

range therefore there is not d -wave solution. By further
lowering of the cut-off parameter, the d -wave symmetry
begins to compete with the s-wave one and for Qc � 1
λ2 − µ∗2 ' λ + µ∗ while λ0 − µ∗0 ' −πµ∗/2Qc signalling
that the d -wave symmetry overcomes the s-wave ones.

In previous studies, we have shown that the nonadi-
abatic corrections lead to an enhancement of the critical
temperature for small values of Qc in the s-wave channel.
However in the present model, small values of Qc lead to a
solution with d -wave symmetry and the question we face
in the following sections is whether also in this symmetry
the nonadiabatic corrections provide for an amplification
of Tc.

3 Non adiabatic vertex corrections

In this section we introduce the first corrections arising
from the breakdown of Migdal’s theorem in the equations
for the normal and anomalous self-energies. By following
reference [7], the first nonadiabatic corrections to the e-ph
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Fig. 2. Self-consistent gap equation including the first correc-
tions beyond Migdal’s theorem

interaction affect the normal state self-energy (8) in the
following way:

Σ̃N(k) =
∑
k′

ṼN(k, k′)G(k′), (26)

ṼN(k, k′) = V (k − k′)

×
[

1 +
∑
q

V (k − q)G(q − k + k′)G(q)

]
,

(27)

where the last term in the square bracket of equation (27)
defines the vertex function. The off-diagonal self-energy in
the nonadiabatic regime is instead modified as follows:

Σ̃S(k) =
∑
k′

[
ṼS(k, k′)− U∗(k − k′)

]
×G(k′)G(−k′)Σ̃S(k′), (28)

ṼS(k, k′) =V (k − k′)
[

1+
∑
q

V (k − q)G(q)G(q − k + k′)

+
∑
q

V (k − q)G(−q)G(−q + k − k′)
]

+
∑
q

V (k − q)V (q − k′)G(q)G(q − k − k′),

(29)

where q ≡ (q, ωl) and U∗(k− k′) is given by equation (6).
The second and the third terms within the square brackets
in equation (29) correspond to the first order vertex cor-
rections, while the last term corresponds to the cross scat-
tering. These non adiabatic terms are shown in Figure 2
in which we are only include these terms that give a finite
contribution for T = Tc.

In the vertex corrections there is simple one-phonon
interaction, while in the cross term the sum refers to
the product of both phonon propagators. This product of

phonon propagators can be approximated as [7]:

ω2
0

(ωn − ωl)2 + ω2
0

ω2
0

(ωl − ωm)2 + ω2
0

' ω2
0

(ωn − ωm)2 + ω2
0

ω2
0

(ωn − ωl)2 + ω2
0

· (30)

For the momentum dependence in the electron-phonon
coupling we can approximate

|g(k− q)|2|g(q− k′)|2 ' |g(k− k′)|2|g(k− q)|2. (31)

This approximation is valid for relatively small values of
the cut-off qc. Therefore the last term in equation (29)
reduces to:∑
q

V (k − q)V (q − k′)G(q)G(q − k − k′)

' V (k − k′)
∑
q

V (k − q)G(q)G(q − k − k′) . (32)

At this point it is useful to introduce a compact notation
for the vertex and cross functions:

PV(k, k′) ≡ 1
λ

∑
q

V (k − q)G(q)G(q − k + k′) , (33)

PC(k, k′) ≡ 1
λ

∑
q

V (k − q)G(q)G(q − k − k′) . (34)

Thus equations (27, 29) may be written in a simpler way
as follows:

ṼN(k, k′) = V (k − k′) [1 + λPV(k, k′)] , (35)

ṼS(k, k′) = V (k − k′) [1 + 2λPV(k, k′) + λPC(k, k′)] .
(36)

In equation (28), the momentum dependence of Σ̃S(k) is
transformed as in equation (13) and the interaction term
ṼS(k, k′) is replaced by its angular weighted average:

〈ṼS(k, k′)〉l =
1

2π

∫ π

−π
dθ ṼS(cos θ)e−ilθ , (37)

which in terms of averaged vertex and cross corrections is
expressed as:

〈ṼS(k, k′)〉l =〈V (k − k′)〉l + 2λ〈V (k − k′)PV(k, k′)〉l
+ λ〈V (k − k′)PC(k, k′)〉l. (38)

The first term in the r.h.s. contains only the e-ph interac-
tion and the phonon propagator and it is simply given by:

〈V (k − k′)〉l = g2D(ωn − ωm)
[
πkF

qc

]
〈θ(qc − |k− k′|)〉l

=
λl
N0

D(ωn − ωm), (39)
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Fig. 3. Behavior of the vertex (top panel) and cross (bottom
panel) functions in the s-wave channel for different values of the
cut-off parameter Qc. The case shown refers to the parameters
ωn = 0, ωm = ω0.

where λl for l = 0 and l = 2 is given in equations (20, 22),
respectively. The second and third terms of (38) corre-
spond instead to the momentum averages of the nonadia-
batic corrections

〈V (k − k′)PV(k, k′)〉l = g2D(ωn − ωm)P lV(ωn, ωm, qc),

〈V (k − k′)PC(k, k′)〉l = g2D(ωn − ωm)P lC(ωn, ωm, qc),
(40)

where

P lV(ωn, ωm, qc) =
[
πkF

qc

]
〈θ(qc − |k− k′|)PV(k, k′)〉l

P lC(ωn, ωm, qc) =
[
πkF

qc

]
〈θ(qc − |k− k′|)PC(k, k′)〉l.

(41)

Analytic expressions of the vertex and cross functions to-
gether with their averages P lV and P lC for l = 0 and l = 2
are reported in Appendix and the results are shown in
Figures 3 and 4 as function of the adiabatic parameter
ω0/EF and for different values of dimensionless cut-off
Qc = qc/2kF. All the curves have been obtained by set-
ting ωn = 0 and ωm = ω0 so that the exchanged frequency
equals ω0. The behaviors, particularly at small Qc, of P lV
and P lC are essentially independent of the particular sym-
metry. In fact for both l = 0 (s-wave) and l = 2 (d -wave)
the nonadiabatic corrections are positive leading to an en-
hancement of the total e-ph interaction. We expect there-
fore that, as for the s-wave case [6,7], also for the d -wave
symmetry the vertex and cross corrections tend to amplify
Tc when Qc is sufficiently small.

To verify this point, we can write down the nona-
diabatic Eliashberg equations for different symmetry

0.0

0.4

0.8

PV

l=2

Qc=0.1
Qc=0.3
Qc=0.5
Qc=0.7
Qc=0.9

d−wave

0.0 0.2 0.4 0.6 0.8 1.0
ω0/EF

−0.4

0.0

0.4
PC

l=2

Fig. 4. Behavior of the vertex (top panel) and cross (bottom
panel) functions in the d-wave channel for different values of
the cut-off parameter Qc. The case shown refers to the param-
eters ωn = 0, ωm = ω0.

channels. As in the previous section, the normal state
self-energy (26) is averaged over the Fermi surface and,
according to (35), ṼN(k, k′) reduces to:

ṼN(k, k′)→ 〈ṼN(k, k′)〉l=0

=
D(ωn − ωm)

N0

[
λ0 + λ2P l=0

V (ωn, ωm, qc)
]
,

(42)

and Z(ωn) = 1− Σ̃(0)
N (ωn)/iωn becomes:

Z(ωn) = 1− πTc

ωn

∑
m

[
λ0 + λ2P l=0

V (ωn, ωm, qc)
]

×D(ωn − ωm)
ωm
|ωm|

2
π

arctan
[

E/2
|ωm|Z(ωm)

]
. (43)

Finally, the gap function for different symmetry chan-
nels is:

Z(ωn)∆l(ωn) = −πTc

∑
ωm

[λl + 2λ2P lV(ωn, ωm, qc)

+ λ2P lC(ωn, ωm, qc)− µ∗l ]D(ωn − ωm)
∆l(ωm)
|ωm|

× 2
π

arctan
[

E/2
|ωm|Z(ωm)

]
(44)

where µ∗l is given by equations (21, 23) and l = 0, 2.
To establish the range ofQc values in which the d -wave

symmetry is more stable than s-wave one and to quantify
the effect of nonadiabaticity, we solve numerically the gen-
eralized Eliashberg equations (43, 44) for l = 0 and l = 2.
To find Tc, we follow the maximum eigenvalue method
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Fig. 5. Behaviour of the critical temperature Tc as function of
Qc in the s- and d-wave symmetry channels. The case shown
refers to the parameters λ = 1 and µ∗ = 0.1. In the inset it is
shown the case without nonadiabatic corrections.

described for example in [7]. The resulting values of Tc

as a function of Qc are shown in Figure 5 for the d- and
s-wave symmetries. In the inset we show the critical tem-
perature calculated without the vertex and cross correc-
tions, i.e., for the ME equations (18, 19). To display the
crossover between the d- and the s-wave symmetries more
clearly, we show the results for λ = 1 and µ∗ = 0.1. When
µ∗ ' λ in fact the s-wave symmetry is suppressed by the
strong repulsive interaction.

By reducing Qc, the s-wave solution (dashed lines) de-
creases monotonically when the vertex and cross correc-
tions are not included (inset) while for the nonadiabatic
case the corresponding Tc shows an upturn before falling
to zero at Qc → 0. This latter feature is due to the nona-
diabatic corrections which become more positive when Qc

is small. For lower values of Qc, however, the pseudopo-
tential is dominant and Tc falls rapidly to zero. Contrary
to the isotropic case, the d -wave solutions (solid lines)
lead to critical temperatures which increase when Qc is
lowered. Since, as discussed before, the vertex corrections
have a similar behavior both in d- and in s-wave sym-
metries when Qc is small, the critical temperature in the
nonadiabatic case is enhanced compared to the solution
without vertex and cross corrections.

It is finally interesting to compare the present results
with the phenomenology of the superconducting copper-
oxides, which show d -wave, and the fullerides, which in-
stead show s-wave. In our perspective there are important
differencies between the two materials. A relevant one is
that the oxides have their largest values of Tc when the
Fermi surface is strongly influenced by van Hove singu-
larities. Then correlation effects can be estimated to be
larger in the oxides and, finally, fullerides seem to have
rotational disorder which would favour s-wave. Therefore,
in principle, it could happen that in the oxides, going into
the overdoped phase might lead to a crossover from d -wave
to s-wave depending on the parameters.

4 Conclusions

In isotropic s-wave superconductors, the first nonadia-
batic corrections to the e-ph interaction such as vertex and
cross functions are strongly dependent on the momentum
transfer q. In particular, small values of q leads to posi-
tive nonadiabatic corrections inducing an enhancement of
the critical temperature Tc [6,7]. Here, we have addressed
the problem of the momentum dependence of the nona-
diabatic corrections for a d -wave symmetry of the order
parameter. By introducing a model interaction in which
the e-ph interaction is dominant at small values of q and
the residual repulsion of electronic origin is instead impor-
tant at larger momentum transfers, we have shown that
also when the solution has d -wave symmetry, the inclu-
sion of nonadiabatic corrections enhances Tc compared to
the case without corrections. Therefore in a strongly cor-
related system, for which the e-ph interaction is mainly
of forward scattering, d -wave superconductivity driven by
phonons can be sustained by the nonadiabatic corrections

Appendix A: Analytical calculation of vertex
and cross functions

A.1 Vertex function

The evaluation of the vertex function given in
equation (33) follows basically the same lines and approx-
imations made in reference [7], the main difference being
that here we refer to a two-dimensional system rather than
a three-dimensional one. Making use of the linear model
for the electronic dispersion and considering the limit of
Tc/ω0 � 1, we obtain

PV(k, k′) =
ω0

2λ

∑
q

|g(k− q)|2
εq − εq−k+k′ − iωn + iωm

×
[
− θ(εq)
εq + ω0 − iωn

− θ(−εq)
εq − ω0 − iωn

+
θ(εq−k+k′)

εq−k+k′ + ω0 − iωm
+

θ(−εq−k+k′)
εq−k+k′ − ω0 − iωm

]
. (A.1)

The main difficulty comes from εq−k+k′ which, within our
model, is

εq−k+k′ = vF[q2 + k′2 + k2 − 2qk cosα+ 2qk′ cosβ

− 2kk′ cos θ]1/2 − µ, (A.2)

where α, β and θ are the angles between the directions of
(q,k), (q,k′) and (k,k′) respectively. In the limit of small
qc, the presence of θ-function in front of PV (Eq. (41))
and inside of the integral leads to |k| ∼ |k′| and |k| ∼ |q|.
Therefore equation (A.2) can be rewritten as follows:

εq−k+k′ ' εq + vFkF [1− cosα+ cosβ − cos θ] , (A.3)

where we have taken |k| ' kF. We can relate the angle
β to α and θ by means of relation β = θ − α. Therefore
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equation (A.3) becomes:

εq−k+k′ ' εq + vFkF [(1− cosα)(1− cos θ) + sinα sin θ] .
(A.4)

If Q = |k − k′|/2kF then cos θ = 1 − 2Q2 and sin θ =
2Q
√

1−Q2:

εq−k+k′ ' εq +EQ2(1− cosα) +EQ
√

1−Q2 sinα .
(A.5)

Expanding cosα and sinα in powers of α and retaining
only the lowest order term in α and Q we finally obtain:

εq−k+k′ ' εq +EQα . (A.6)

For small qc we can replace

θ(qc − |k− q|) ' θ(qc − kF

√
2(1− cosα))

' θ(2Qc − |α|) . (A.7)

At this point it is convenient to transform the momentum
integration into an energy integration:∫

d2q

(2π)2
= N0

∫ π

−π

dα
2π

∫ E/2

−E/2
dε (A.8)

where we have used a constant DOS N(ε) = N0 in the
range −E/2 ≤ ε ≤ E/2. The integration over the energy
ε and over the angle α can be performed analytically and
the final expression of the vertex function in the limit of
small Qc is given by

PV(k, k′) = ω0B(ωn, ωm)+
ω0

2Qc

1
EQ

arctan
(

2QcEQ

|ωn − ωm|

)
× A(ωn, ωm)−B(ωn, ωm)(ωn − ωm)2

|ωn − ωm|
, (A.9)

where Q = |k− k′|/2kF, Qc = qc/2kF, and

A(ωn, ωm) = (ωn − ωm)
[
arctan

(
ωn
ω0

)
− arctan

(
ωm
ω0

)
+ arctan

(
ωm

ω0 +E/2

)
− arctan

(
ωn

ω0 +E/2

)]
,

(A.10)

B(ωn, ωm) = −(ω0 +E/2)
(ω0 +E/2)2 + 2ω2

m − ωnωm
[(ω0 +E/2)2 + ω2

m]2
.

(A.11)

A.2 Cross function

The function PC(k, k′), given by equation (34), can be
explicitly evaluated within the same scheme of calculation

of the vertex function. In the limit of Tc/ω0 � 1 we have:

PC(k, k′) =
ω0

2λ

∑
q

|g(k− q)|2
εq − εq−k−k′ − iωn − iωm

×
[
− θ(εq)
εq + ω0 − iωn

− θ(−εq)
εq − ω0 − iωn

+
θ(εq−k−k′)

εq−k−k′ + ω0 + iωm
+

θ(−εq−k−k′)
εq−k−k′ − ω0 + iωm

]
. (A.12)

The electron energy εq−k−k′ can be approximated for
qc � 2kF as follows:

εq−k−k′ = vF[q2 + k′2 + k2 − 2qk cosα− 2qk′ cosβ

+ 2kk′ cos θ]1/2 − µ

' εq +E(1−Q2)
α2

2
−EQ

√
1−Q2α. (A.13)

The integrations over the energy and the angle are elemen-
tary, the final expression of the cross function is however
quite complicated:

PC(k, k′) = ω0B(ωn,−ωm)− ω0

2Qc

1

E
√

1−Q2ρ(k, k′)
× {cos[η(k, k′)]C(k, k′) + sin[η(k, k′)]D(k, k′)}

× A(ωn,−ωm)−B(ωn,−ωm)(ωn + ωm)2

|ωn + ωm|
, (A.14)

where the functions A and B are the same of
equations (A.10, A.11) with ωm → −ωm. The function
C, D, η, ρ are given by

ρ(k, k′) =

[
Q4 +

(
2
ωn + ωm

E

)2
]1/4

, (A.15)

η(k, k′) = −1
2

arctan
(

2|ωn + ωm|
EQ2

)
, (A.16)

C(k, k′) = b(k, k′)2

{
arctan

[
a+(k, k′)
b(k, k′)

]
+arctan

[
a−(k, k′)
b(k, k′)

]
+arctan

[
2Qc − a+(k, k′)

b(k, k′)

]
+ arctan

[
2Qc − a−(k, k′)

b(k, k′)

]}
, (A.17)

D(k, k′) =
1
2

ln
{

[2Qc − a+(k, k′)]2 + b(k, k′)2

[2Qc − a−(k, k′)]2 + b(k, k′)2

× a−(k, k′)2 + b(k, k′)2

a+(k, k′)2 + b(k, k′)2

}
, (A.18)

a±(k, k′) =
Q± ρ(k, k′) cos[η(k, k′)]√

1−Q2
, (A.19)

b(k, k′) =
ρ(k, k′)√

1−Q2
sin[η(k, k′)] . (A.20)
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A.3 s- and d-wave averages

In what follows we report the final expressions of the
s-wave and d -wave averages of the vertex and cross
functions defined in equation (41) for l = 0 (s-wave)
and l = 2 (d -wave), where PV and PC are given by
equations (A.9, A.14), respectively.

P l=0
V (ωn, ωm; qc) =

A(ωn, ωm)−B(ωn, ωm)(ωn − ωm)2

|ωn − ωm|

× ω0

2EQ2
c

F1(ωn, ωm, Qc) +B(ωn, ωm)
arcsinQc

Qc
(A.21)

P l=0
C (ωn, ωm; qc) =

− A(ωn,−ωm)−B(ωn,−ωm)(ωn + ωm)2

|ωn + ωm|

× ω0

2EQ2
c

F2(ωn, ωm, Qc) +B(ωn,−ωm)
arcsinQc

Qc

(A.22)

P l=2
rmV (ωn, ωm; qc) =

A(ωn, ωm)−B(ωn, ωm)(ωn − ωm)2

|ωn − ωm|
× ω0

2EQ2
c

F3(ωn, ωm, Qc) +B(ωn, ωm)(1− 2Q2
c)
√

1−Q2
c

(A.23)

P l=2
C (ωn, ωm; qc)

= −A(ωn,−ωm)−B(ωn,−ωm)(ωn + ωm)2

|ωn + ωm|
ω0

2EQ2
c

× F4(ωn, ωm, Qc) +B(ωn,−ωm)(1− 2Q2
c)
√

1−Q2
c

(A.24)

where

F1(ωn, ωm, Qc) =
∫ Qc

0

dQ
Q
√

1−Q2
arctan

(
2EQcQ

|ωn + ωm|

)
,

(A.25)

F2(ωn, ωm, Qc) =
∫ Qc

0

dQ
Q

(
1

1−Q2

)
1

ρ(k, k′)
× {C(k, k′) cos[η(k, k′)]−D(k, k′) sin[η(k, k′)]} (A.26)

F3(ωn, ωm, Qc) =
∫ Qc

0

dQ
Q

(
1 + 8Q4 − 8Q2√

1−Q2

)

× arctan
(

2EQcQ

|ωn + ωm|

)
, (A.27)

F4(ωn, ωm, Qc) =
∫ Qc

0

dQ
Q

(
1 + 8Q4 − 8Q2

1−Q2

)
1

ρ(k, k′)
× {C(k, k′) cos[η(k, k′)]−D(k, k′) sin[η(k, k′)]} . (A.28)

The functions C, D, η and ρ are precedently defined.
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Eur. Phys. J. B 9, 201 (1999).


